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Teller effect will perhaps become clearer after further
investigation of the influence of the alkyl chains. In
order to throw some light on this question we are
studying the structure of bis(N-n-propylsalicylaldimi-
nato)copper(Il) and of bis(N-n-heptylsalicylaldimi-
nato)nickel(II).
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A Method of Positioning a Known Molecule in an Unknown Crystal Structure

By R.A.CROWTHER AND D.M. BLow
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, England

(Received 19 April 1967)

A function is proposed for determining the position of a known molecule of known orientation relative
to a crystallographic symmetry element in an unknown crystal structure. A Fourier-series summation
with appropriate coefficients is used to express the correlation between the observed Patterson function
of the crystal and the set of cross-Patterson vectors of a model structure. The point of maximum cor-
relation gives the value of the intermolecular vector between molecules related by the chosen sym-
metry element. The function has been tested on sperm whale myoglobin.

Introduction

A number of methods exist for determining the orien-
tation of a known molecule in an unknown crystal

structure (Rossmann & Blow, 1962; Nordman &
Nakatsu, 1963; Tollin & Cochran, 1964). Several
methods have also been used to solve the subsequent
translational problem of positioning the molecule rela-
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tive to the chosen origin of the crystal (Nordman &
Nakatsu, 1963; Tollin & Cochran, 1964; Tollin, 1966).
We wish to present a new method of solving the trans-
lational problem. The proposed function is simple to
compute and, we believe, particularly well suited to
the analysis of complex molecules. We expect to be
able to apply it to the study of crystalline proteins in
cases where a closely related protein structure is known
(Scouloudi, 1960).

Consider the problem of positioning a known mol-
ecule relative to a particular crystallographic symmetry
element. The term ‘known molecule’ here implies that
not only do we know the atomic coordinates relative
to some local origin O, fixed in the molecule, but also
that the molecule is in the same orientation as one of
the molecules in the unknown crystal structure. We
wish to determine the position of the local origin O
with respect to the chosen crystallographic symmetry
element. If the known molecule is placed at an arbitrary
position in the unit cell, the position of the symmetry
related molecule is then fixed and it is possible to cal-
culate the set of Patterson vectors from the known mol-
ecule to the symmetry related molecule. As the position
of the known mole:ule varies, the relative configura-
tion of this set of Patterson vectors is unchanged but
the set moves bodily to a position characterized by the
vector joining the local origins of the known molecule
and the symmetry related molecule. This set of vectors
will be referred to as the cross-Patterson of the model
structure and is to be regarded as a function of two
variables, namely position in Patterson space and also
position of the local origin of the known molecule in
the model structure.

A well known method of finding the position of the
local origin O is to move this set of cross-Patterson
vectors over the observed Patterson function of the
crystal, using a minimum function or similar measure
of fit to determine the correct solution (see Buerger,
1959). This method is most powerful when there are
few atoms in the molecule. If there are very many
atoms it would be natural to sum up the observed Pat-
terson density at every point corresponding to an ex-
pected cross-Patterson peak and to use this total as a
measure of fit for a particular position of O. This is
equivalent to the convolution of the observed Patter-
son function with the group of cross-Patterson vectors
of the model structure. This convolution may be
achieved by multiplying the Fourier coefficients of the
two functions, and performing a Fourier summation
with the coefficients so obtained. The resulting func-
tion should have a prominent peak corresponding to
the vector between the two origins. In the next section
we give a formal derivation.

Derivation of the translation function

If an atom in the reference molecule has crystallo-
graphic coordinates x, then let the corresponding atom
in the symmetry related molecule have crystallographic
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coordinates (Ax+d) (Fig.1). The set of cross-Patter-
son vectors from the reference molecule to the sym-
metry related molecule may be written as

Pu@)= | as9eitx-+u)ax )

where go,0; represent the electron densities within the
reference molecule and the symmetry related molecule
respectively, and the integral is taken over the whole
unit cell volume, V. If the local origin of the known
molecule is at s, we may express (1) in terms of the
electron density, oum, of the known molecule relative
to the local origin O.

Py(u,s)= SVQ m(xX—s)om[A-1(x+u—As—d)]dx .

Expanding g as a Fourier series in terms of the struc-
ture factors, Fus, of the known molecule calculated
relative to the local origin O, we have

Por(u,s)= SV £ Fy(b) expl ~2uih (x~9)

x X Fu(p)exp[—2nipA—1(x+u— As—d)]dx
= 2 Fa(h)F(p) exp2mi(hs+pA-i(As +d))]
b p

exp(—2nipA-1lu) S exp[—2ni(h+pA-Dx)dx .
v

Since A is a crystallographic symmetry operator the
integral vanishes unless h+pA-1=0, when it takes the
value unity. Therefore,

Pyy(u,s) =f Fy()Fy(—hA)

exp[2zih.(s — As—d)] exp(2nih.u) .

Writing the intermolecular vector t=—s+ As+d (Fig.
1) and using the Friedel relation, this becomes

Poi(u, t) =f Fu()F},(hA)

exp(—2nih.t) exp(2nih.w) . (2)
We now define the translation function T'(t) by the

convolution
T(t)= SVPOI(u, HP(u)du , 3

where P(u) represents the observed Patterson function
of the crystal. When t becomes equal to the ‘true’
intermolecular vector t,, the computed cross-Patterson
vectors Py, fit correctly to the observed Patterson func-
tion P, and T(t;) will have a large positive value.

Expanding the observed Patterson function P(u) as
a Fourier series and using the expression (2) we may
write (3) as

T(t) = SV £ Fu(W)F3(hA) exp(~2nih. 0

exp(2rih.u) 2 | Fons(p)|? exp(—2nip.u)du .
p
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The integral vanishes unless h—p=0, so that we have
finally

T(t)=Z |Foos(h)|2Fy(h)F,(hA) exp(—27ih.t) .
h

We have thus expressed the correlation between a set
of cross-Patterson vectors for a model structure and
the observed Patterson function in terms of a Fourier
series with coefficients which are simple to compute.
The translation function can then be evaluated by
means of a standard Fourier summation program.

Modified translation functions

The observed Patterson function of the crystal contains
both intramolecular and intermolecular Patterson vec-
tors. Since we are interested in fitting the intermolecular
vectors, the intramolecular vectors only serve to in-
crease the background noise in the summation. How-
ever, since the molecular structure is known, it is pos-
sible to remove the intramolecular vectors from the
observed Patterson function, provided the observed
intensities can be put on an appropriate scale. Suppose
that there are n molecules in the unit cell and that the
ith molecule is related to the known molecule by a
symmetry operator whose rotational part is represented
by matrix A;, where A,, the matrix relating the known
molecule to itself, is the identity matrix. Then the
modified translation function, which fits the set of
intermolecular vectors between the known molecule
and the chosen symmetry related molecule to the com-
plete set of intermolecular vectors in the observed Pat-
terson function is given by

Ti(0=Z (Fonelh)? — g; |Fu(bADP)

x Fp(h)F},(hA) exp(—27ih . t) ,

mol 3

mol 2

(a)

Fig.1. (@) Unknown structure containing four molecules in space group P4. In this case A= (1
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where Fons and Fpy are assumed to be on an absolute
scale.

Unless the molecule has a symmetry of its own,
Fy(h) has no symmetry, and in general the functions
T(t), Ty(t) will have only Pl symmetry. However, be-
cause of Friedel’s Law, some special cases arise. Let

us write Fri(h)F iy (hA)=Frs(h)Fas(—hA) .

If A is a twofold rotation, — A is a reflexion in a per-
pendicular mirror plane, and since Friedel’s Law also
enforces this symmetry on |Fops(h)|, the translation
functions have Pm symmetry. Conversely if A is a
mirror operation, the translation functions have P2
symmetry. In each of these cases, the translation vector
to must always lie in a special position in a plane or
on an axis.

The expressions given so far represent the fitting of
one particular set of cross-Patterson vectors of a model
structure containing two molecules to the complete set
of intermolecular vectors in the observed Patterson
function. Which intermolecular vector is found depends
on which two molecules were used in the model struc-
ture. It is possible, however, to modify the expression
for the translation function in such a way that it has
higher symmetry and contains peaks corresponding to
all possible intermolecular vectors in the unknown
structure.

To do this we must use a model structure which
contains the same number of molecules as the unknown
structure. Using the above notation the set of cross-
Patterson vectors from molecule i to molecule j may
be written, by comparison with equation (1) above,
as

Pij(u, ti;)= 2 Fu(hAo)F (A7)
exp(—2nih.ti;) exp(2nih.u) ,

(6)
0 -1 0
0 0} d=(0,0,0).
0 01

(b) Model structure containing two molecules in correct orientation relative to the unknown structure and related by a fourfold
axis, but at an otherwise arbitrary position in the unit cell. As vector s varies, the correlation between the set of Patterson
vectors from molecule O to molecule 1 in the model structure and the observed Patterson function of the unknown structure
takes its largest value when s=sg. The peak in the translation function representing the required intermolecular vector occurs

at the point to.
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where t;; is now the intermolecular vector between
molecule i and molecule j. If we sum over all possible
pairs (i,j) and convolute the resulting expression with
the observed Patterson function we obtain

n—1n—1
2 X Fu(hA)F}(hAy) exp(—2nih.ty)] .
i=0 j=0

i*j

z [ Fons()[?[

Since the exponent appears within the inner summa-
tions, this function cannot be computed by a single
Fourier summation. However, a Fourier summation
of the form

TN T T N [T O

!

(b)
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n—1 n—1
2 Z Fu(hA;)F3(hA)]

Tty =2 | Fons(h)[?[
h i=0 j=0
exp(—2nih.t)

i)

will have peaks for all possible intermolecular vectors
in the unknown structure. The spatial arrangement and
relative weights of the peaks will be the same as the
peaks in the Patterson function of the point group of
the molecules within the unit cell of the unknown
structure, but with the origin peak removed. As before,
the intramolecular vectors may be removed from the
observed Patterson function before convoluting it with

)

/ 7/
~, /"/\_ p¥ ;

Y

Fig.2. (a) Two-dimensional translation function T(fs,t;) for sperm whale myoglobin (case 2, Table 1). (b) Section y=% from
three-dimensional translation function T(¢+,3,¢2) for sperm whale myoglobin (case 3, Table 1). In each case ¢ is horizontal.
Negative contours have been suppressed and the zero contour has been plotted half-weight. The expected peak, for the
particular choice of local origin made, should occur at (0-645, 0-708).
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the model Patterson function. This function 7(t) is no
better than T'(t) from the point of view of the ratio
of peak and background, though because of its higher
symmetry it may be easier to compute.

Application

The method has been tested by applying it to sperm
whale myoglobin. This protein has a molecular weight
of approximately 17000 and crystallizes in space group
P2, with two molecules in the unit cell. The expressions
for the translation function in this case become

T (tz,ty,t2) =X Z X |Foos(hkD)|2F pr(hkl)Far(hKkI)
]
exp[—27zi(htx+kty+ltz)]
Tl(fxatystz)zf { .? (| Fovs(hk D)2 — | Fra(hk D)2

— | Fu (kD) |2 Fas(hk D) F pr(hkel)
exp[—2mi(ht, +kty+1t;)] .

Since the relative y coordinate of the two molecules
is known to be 3, it is only necessary to compute the
section y=1 in the Fourier summation. Alternatively
it should be possible to determine the relative x and z
coordinates by means of a two-dimensional summation.
The translation function in projection becomes:

T (tz,t;) =2 Z | Foos(hO)|2F2%,(hO!)
;x;;[ —2ni(htz+1t)]

Ti(tz,t2)= hZ IZ (| Fons(hOI)[2 — 2| Far(hOI)|2) F3,(ROI)
exp[—2ni(htz+1t,)] .

The molecular structure factors were calculated from
atomic coordinates kindly supplied by Dr H. C. Watson
and Dr J.C.Kendrew. For the particular choice of local
origin used in calculating the molecular structure fac-
tors, the required peak should occur at #;=0-645,
t,=0-708. The results are summarized in Table 1. Cases
1 and 2 relate to calculations in projection including
only A0/ reflexions with spacings between 8 and 4 A
(approximately 180 terms). Case 3 relates to section
y=1% from a three-dimensional summation, again in-
cluding reflexions between 8 and 4 A (approximately
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1000 terms). Fig.2 shows the translation function as
calculated in cases 2 and 3.

Table 1. Summary of results
Jor sperm whale myoglobin

Ratio of expected
to next highest

Case Function peak
1 T (projection) 1-60
2 T (projection) 2-14
3 T (section) 3-28

Table 1 shows that the results are improved by using
the function 7 rather than 7. Reflexions correspond-
ing to spacings greater than 8 A were omitted, because
the observed structure amplitudes include large con-
tributions to low order terms from the mother liquor,
which fills the spaces between the protein molecules
in the crystal. The shapes of these regions do not obey
the required translation relations.

It is extremely encouraging that the method gives
such clear cut results even when working in projection,
when the number of terms included in the summation
is comparatively small. The number of terms cannot
be reduced much further: when the summation is re-
stricted to A0/ reflexions between 8 and 5 A (approx-
imately 100 terms), no significant peak is obtained.

We are grateful to Dr H.C.Watson and Dr J.C.
Kendrew for providing atomic coordinates for sperm
whale myoglobin. We thank Professor Gill and the
Manager of the Computer Centre, Imperial College of
Science and Technology, for making computing facil-
ities available. A contour-plotting program written by
Mr T.H.Gossling was used in preparing Fig.2. One
of us (R.A.C.) is a holder of a Medical Research Coun-
cil scholarship.
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